CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07
MATHEMATICS AND HIGHER MATHEMATICS
Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	7

1 (i) 2.51 .25 (ii) 5	$\begin{aligned} & \hline \mathrm{B} 1 \quad \mathrm{~B} 1 \\ & \mathrm{~B} 1 \mathrm{ft} \quad \mathrm{~B} 1 \mathrm{ft} \end{aligned}$		For correct mean. For correct variance For correct mean. For correct variance
$\begin{aligned} & 2 \mathrm{H}_{0}: p=0.6 \quad \mathrm{H}_{1}: p>0.6 \\ & \mathrm{P}(X \geq 10)={ }_{12} \mathrm{C}_{10} 0.6^{10} 0.4^{2}+ \\ & { }_{12} \mathrm{C}_{11} 0.6^{11} 0.4^{1}+0.6^{12} \\ & =0.0834 \end{aligned}$	M1* M1*dep A1		For one Bin term ($\mathrm{n}=12, \mathrm{p}=0.6$) For attempt $X=10,11,12$ or equiv. For correct answer (or correct individual terms and dig showing 0.1)
Reject H_{0}, i.e. accept claim at 10% level	B1ft B1	5	For correct conclusion
S.R. Use of Normal scores $4 / 5$ max $z=\frac{9.5-7.2}{\sqrt{2.88}}$	B1		For correct H_{0} and H_{1}
$\begin{aligned} & \text { (or equiv. Using } \mathrm{N}(0.6,0.24 / 12) \text {) } \\ & =1.3552 \end{aligned}$	M1		Use of $\mathrm{N}(7.2,2.88)$ or $\mathrm{N}(0.6,0.24 / 12)$ and standardising with or without cc
$\operatorname{Pr}(>9.5)=1-0.9123=0.0877$ Reject H_{0}, i.e. accept claim at 10%	A1		For correct answer or 1.3552 and 1.282 seen For correct conclusion
level	B1ft		
3 (i) $\begin{aligned} & 31 \pm 2.326 \times \frac{3}{\sqrt{20}} \\ & =(29.4,32.6) \end{aligned}$ (ii) 30% is inside interval Accept claim (at 2\% level)			For correct mean Calculation of correct form $\bar{x} \pm z \times \frac{s}{\sqrt{n}}$ (must have \sqrt{n} in denominator) $z=2.326$ Correct answer
	M1		
		4	
	ftB1* ftB1*dep	2	S.R. Solutions not using (i) score B1ft only for correct working and conclusion
$\begin{gathered} 4 \text { (i) } \mathrm{P}(X>1.5)=\left[x-\frac{x^{2}}{4}\right]_{1.5}^{2} \\ \quad \text { or } 1-\left[x-\frac{x^{2}}{4}\right]_{.0}^{1.5} \\ \quad=0.0625 \end{gathered}$	M1		For substituting 2 and 1.5 in their $\int f(x) d x$ (or area method $1 / 2$ their base x their height)
	A1	2	For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	7

(ii) $\begin{aligned} & \mathrm{E}(X)= \\ & \int_{0}^{2}\left(x-\frac{1}{2} x^{2}\right) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{6}\right]_{0}^{2} \\ & =2 / 3 \end{aligned}$ (iii) $m-\frac{m^{2}}{4}=0.5$ $m=0.586(2-\sqrt{2})$	M1 A1 2 M1 M1 A1 3	For evaluating their $\int x f(x) d x$ For correct answer For equating their $\int f(x) d x$ to 0.5 For solving the related quadratic For correct answer
$\text { (i) } \begin{aligned} & \mathrm{P}(X<1.7)=\Phi\left(\frac{1.7-2.1}{0.9 / \sqrt{20}}\right) \\ & =1-\Phi(1.9876) \\ & =0.0234 \end{aligned}$ $\text { (ii) } \begin{aligned} & \mathrm{P}(\text { Type II error })=\mathrm{P}(X>1.7) \\ = & 1-\Phi\left(\frac{1.7-1.5}{0.9 / \sqrt{20}}\right) \\ = & 1-\Phi(0.9938)=0.160 \end{aligned}$	B1 M1 A1 A1 4 B1 M1 A1 A1 4	For identifying prob Type I error For standardising For correct standardising and correct area For correct final answer For identifying prob for Type II error For standardising using 1.5 and their 1.7 For correct standardising and correct area For correct final answer
6 (i) $\begin{aligned} & \lambda=1.25 \\ & \mathrm{P}(X<4)= \\ & e^{-1.25}\left(1+1.25+\frac{1.25^{2}}{2}+\frac{1.25^{3}}{6}\right) \\ & =0.962 \end{aligned}$ (ii) $\begin{aligned} & X \sim \mathrm{~N}(182.5,182.5) \\ & \mathrm{P}(>200 \text { breakdowns })= \\ & 1-\Phi\left(\frac{200.5-182.5}{\sqrt{182.5}}\right) \\ & =1-\Phi(1.332) \\ & =0.0915(0.0914) \end{aligned}$ (iii) $\lambda=5$ for phone calls $\lambda=6.25$ for total $P(X=4)=e^{-6.25}\left(\frac{6.25^{4}}{4!}\right)$ $=0.123$	M1 M1 A1 3 B1 M1 A1ft A1 4 B1 M1 A1 3	For attempting to find new λ and using it For summing $\mathrm{P}((0) 1,2,3$,$) or$ $P(0,1,2,3,4)$ using a Poisson expression For correct answer For correct mean and variance For standardising process with or without continuity correction For correct standardising and correct tail For correct answer For summing their two λ s and using a Poisson expression OR alt. method using sep. distributions 5 terms req. For correct answer

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	7

