CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	7

1 (i) 2.5 1.25	B1 B1 2	For correct mean For correct		
1 (i) 2.5 1.25	B1 B1 2	For correct mean. For correct variance		
(ii) 5 5	B1ft B1ft 2	For correct mean. For correct		
		variance		
2 $H_0: p = 0.6$ $H_1: p > 0.6$	B1	For correct H_0 and H_1		
$P(X \ge 10) = {}_{12}C_{10}0.6^{10}0.4^2 + {}_{12}C_{11}0.6^{11}0.4^1 + 0.6^{12}$	M1*	For one Bin term (n = 12, p = 0.6)		
$ _{12}C_{11}0.0 0.4 \neq 0.0$ = 0.0834	M1*dep	For attempt $X = 10, 11, 12$ or equiv		
	A1 .	For correct answer (or correct		
		individual terms and dig showing 0.1)		
Reject H ₀ , i.e. accept claim at 10% level	B1ft 5	For correct conclusion		
S.R. Use of Normal scores 4/5 max	B1	For correct H_0 and H_1		
$z = \frac{9.5 - 7.2}{2}$				
$z = \frac{9.5 - 7.2}{\sqrt{2.88}}$				
(or equiv. Using N(0.6, 0.24/12))	M1	Use of N(7.2, 2.88) or		
= 1.3552		N(0.6, 0.24/12) and standardising		
Pr(>9.5) = 1 – 0.9123 = 0.0877	A1	with or without cc For correct answer or 1.3552 and		
Reject H_0 , i.e. accept claim at 10%		1.282 seen		
level	B1ft	For correct conclusion		
3				
3 (i) $31\pm 2.326 \times \frac{3}{\sqrt{20}}$	B1	For correct mean		
= (29.4, 32.6)	M1	Calculation of correct form		
		$\bar{x} \pm z \times \frac{s}{\sqrt{n}}$		
		(must have \sqrt{n} in denominator)		
	B1 A1 4	z = 2.326 Correct answer		
(ii) 30% is inside interval Accept claim (at 2% level)	ftB1* ftB1*dep 2	S.R. Solutions not using (i) score		
		B1ft only for correct working and		
		conclusion		
Γ 2 7 ²				
4 (i) P(X > 1.5) = $\left[x - \frac{x^2}{4}\right]_{1.5}^2$	M1	For substituting 2 and 1.5 in their		
		$\int f(x)dx$ (or area method ½ their		
L 2 7 ^{1.5}		base x their height)		
or 1 - $\left[x - \frac{x^2}{4} \right]_{.0}^{1.3}$				
= 0.0625	A1 2	For correct answer		

PMT

	Pag	je 2	Mark	Scheme			Syllabus	Paper
			A AND AS LE	VEL – JUNE	2003		9709	7
	(ii)	$E(X) = \int_{0}^{2} (x - x)^{2} dx$	$\frac{1}{2}x^{2}dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{6}\right]_{0}^{2}$	M1		For evaluating their $\int xf(x)dx$		f(x)dx
		= 2/3		A1	2	For correct answer		
	(iii)	$m - \frac{m}{2}$	$\frac{i^2}{4} = 0.5$	M1		For equating their $\int f(x)dx$ to 0.5		
		<i>m</i> = 0	.586 (2- $\sqrt{2}$)	M1 A1	3	For solving the related quadratic For correct answer		
5	(i)		1.7) = $\Phi\left(\frac{1.7-2.1}{0.9/\sqrt{20}}\right)$ Φ (1.9876)	B1 M1 A1		For identifying prob Type I error For standardising For correct standardising and		
		= 0.02	234	A1	4	correct area For correct final answer		
	(ii)		e II error) = $P(X > 1.7)$	B1		For identifying prob for Type II error		
		= 1 - 9	$\Phi\left(\frac{1.7-1.5}{0.9/\sqrt{20}}\right)$	M1		For standardising using 1.5 and their 1.7		
			± (0.0000) 0.400	A1		For correct standardising and correct area		-
		= 1 - 0	$\Phi(0.9938) = 0.160$	A1	4	For correct	t final answer	
6	(i)	$\lambda = 1$		M1		For attemp using it	nting to find ne	ew λ and
		P(X < e ^{-1.25}	$4) = \frac{1}{1+1.25 + \frac{1.25^2}{2} + \frac{1.25^3}{6}}$	M1		P(0, 1, 2, 3 expression		
		= 0.96	62	A1	3	For correct answer		
	(ii)	P(> 2	182.5, 182.5) 00 breakdowns) = $\left(\frac{200.5 - 182.5}{\sqrt{182.5}}\right)$	B1 M1		For standa	t mean and va rdising proce ntinuity correc	ss with or
		= 1 - (Φ (1.332)	A1ft		For correct	t standardisin	g and
		= 0.09	915 (0.0914)	A1	4	correct tail For correct		•
	(iii)		for phone calls 25 for total	B1				
		P(X =	$4) = e^{-6.25} \left(\frac{6.25^4}{4!} \right)$	M1		using a Po method us	ng their two isson express ing sep. distri	sion OR alt.
		= 0.12	23	A1	3	terms req. For correct	t answer	

PMT

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003		7

Γ

7 (i) 20 of A ~A*	B1	For correct mean for either
~N(401, 20 x 0.15 ²)		
~N(401, 0.45)		
20 of <i>B</i> ~B* ~N(401, 1.458)	B1	For variance 20 x 0.15 ² or
	2.	20×0.27^2
<i>A</i> * - <i>B</i> * ∼N(0, 1.908)	M1	For adding their two variances
A = D + N(0, 1.000)		Tor adding their two variances
P(A* - B* > 2)		
$= 1 - \Phi\left(\frac{2-0}{\sqrt{1.908}}\right)$	M1	For consideration of their
$(\sqrt{1.908})$		$A^* - B^* > 2$
		$A^{\circ} - B^{\circ} > Z$
$= 1 - \Phi(1.4479)$		E en sten dendisione en d'Gradia a
$= 1 - \Psi(1.4479)$	M1	For standardising and finding
= 0.0738		correct area
- 0.0736	A1 6	For correct answer
<u>OR</u> A ~N(20.05, 0.15 ² /20),		
$\overline{B} \sim N(20.05, 0.27^2/20)$	B1	For correct mean for either
	B1	For variance 0.15 ² /20 or 0.27 ² /20
$\overline{A} - \overline{B} \sim N(0, 0.00477)$	M1	For adding their variances
$A - B \sim N(0, 0.00477)$		For adding their variances
$P(\overline{A} - \overline{B} > 0.1)$	M1	For consideration of their
$= 1 - \Phi\left(\frac{0.1 - 0}{\sqrt{0.00477}}\right)$		$\overline{A} - \overline{B} > 0.1$
$= 1 - \Phi \left[\frac{1}{\sqrt{0.00477}} \right]$	M1	For standardising and finding
$(\sqrt{0.00477})$		correct area
		_
= 0.0738	A1 6	For correct answer
(ii) $1.96 = \frac{20.07 - 20.05}{(0.15/\sqrt{n})}$	M1	For an equation of correct form on
(1) $(1.80 - (0.15/\sqrt{n}))$		
		RHS involving \sqrt{n}
	B1	For 1.96 used
	M1	For solving an equation of correct
		form (any z)
n = 216	A1 4	For correct answer
•	•	•